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Abstract—Traditional biometric recognition systems rely on a single biometric signature for authentication. While the advantage of

using multiple sources of information for establishing the identity has been widely recognized, computational models for

multimodal biometrics recognition have only recently received attention. We propose a multimodal sparse representation method,

which represents the test data by a sparse linear combination of training data, while constraining the observations from different

modalities of the test subject to share their sparse representations. Thus, we simultaneously take into account correlations as well

as coupling information among biometric modalities. A multimodal quality measure is also proposed to weigh each modality as it

gets fused. Furthermore, we also kernelize the algorithm to handle nonlinearity in data. The optimization problem is solved using

an efficient alternative direction method. Various experiments show that the proposed method compares favorably with competing

fusion-based methods.

Index Terms—Multimodal biometrics, feature fusion, sparse representation

Ç

1 INTRODUCTION

UNIMODAL biometric systems rely on a single source of
information such as a single iris or fingerprint or face

for authentication [1]. Unfortunately, these systems have to
deal with some of the following inevitable problems [2]:

1. Noisy data. Poor lighting on a user’s face or occlusion
are examples of noisy data.

2. Nonuniversality. The biometric system based on a
single source of evidence may not be able to capture
meaningful data from some users. For instance, an
iris biometric system may extract incorrect texture
patterns from the iris of certain users due to the
presence of contact lenses.

3. Intraclass variations. In the case of fingerprint
recognition, the presence of wrinkles due to wetness
[3] can cause these variations. These types of
variations often occur when a user incorrectly
interacts with the sensor.

4. Spoof attack. Hand signature forgery is an example of
this type of attack.

It has been observed that some of the limitations of
unimodal biometric systems can be addressed by deploying
multimodal biometric systems that essentially integrate the
evidence presented by multiple sources of information such

as iris, fingerprints, and face. Such systems are less
vulnerable to spoof attacks, as it would be difficult for an
imposter to simultaneously spoof multiple biometric traits of
a genuine user. Due to sufficient population coverage, these
systems are able to address the problem of nonuniversality.

Classification in multibiometric systems is done by
fusing information from different biometric modalities.
Information fusion can be done at different levels, broadly
divided into feature-level, score-level, and rank-/decision-
level fusion. Due to preservation of raw information,
feature-level fusion can be more discriminative than score-
or decision-level fusion [4]. But, feature-level fusion
methods have been explored in the biometric community
only recently. This is because of the differences in features
extracted from different sensors in terms of types and
dimensions. Often features have large dimensions, and
fusion becomes difficult at the feature level. The prevalent
method is feature concatenation, which has been used for
different multibiometric settings [5], [6], [7]. However, for
high-dimensional feature vectors, simple feature concatena-
tion may be inefficient and nonrobust. A related work in the
machine learning literature is multiple kernel learning
(MKL), which aims to integrate information from different
features by learning a weighted combination of respective
kernels. A detailed survey of MKL-based methods can be
found in [8]. However, for multimodal systems, weight
determination during testing is important, based on the
quality of modalities. Also, a corrupted test sample from a
modality must be rejected by the algorithm. Such a
framework is not yet feasible in the MKL settings. Methods
like those given in [9], [10] try to exploit information from
data from a different view to improve classifier perfor-
mance. However, [9] being an unsupervised technique, is
not suited for classification tasks, and [10] reduces to the
MKL framework in a supervised setting. Similarly, SVM-2k
[11] jointly learns SVM for two views, while maximizing the
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agreement between the projections of data from the two
views . It is, however, not clear how this can be extended to
multiple views, which is common in multimodal bio-
metrics. A Fisher-discriminant-analysis-based method has
also been proposed for integrating multiple views in [12],
but it is also similar to MKL with kernel Fisher discriminant
analysis as the base learner [13].

In recent years, theories of sparse representation (SR)
and compressed sensing (CS) have emerged as powerful
tools for efficient processing of data in nontraditional ways
[14]. This has led to a resurgence in interest in the principles
of SR and CS for biometrics recognition [15]. Wright et al.
[16] proposed the seminal sparse representation-based
classification (SRC) algorithm for face recognition. It was
shown that by exploiting the inherent sparsity of data, one
can obtain improved recognition performance over tradi-
tional methods especially when data are contaminated by
various artifacts such as illumination variations, disguise,
occlusion, and random pixel corruption. Pillai et al. [17]
extended this work for robust cancelable iris recognition.
Nagesh and Li [18] presented an expression-invariant face
recognition method using distributed CS and joint sparsity
models. Patel et al. [19] proposed a dictionary-based
method for face recognition under varying pose and
illumination. A discriminative dictionary learning method
for face recognition was also proposed by Zhang and Li
[20]. For a survey of applications of SR and CS algorithms to
biometric recognition, see [14], [15], [21], [22], [23] and the
references therein.

Motivated by the success of SR in unimodal biometric
recognition, we propose a joint sparsity-based algorithm for
multimodal biometrics recognition. Fig. 1 presents an
overview of our framework. It is based on the well-known
regularized regression method, multitask multivariate
Lasso [24], [25]. The proposed method imposes common

sparsities both within each biometric modality and across

different modalities. The idea of joint sparsity has been

explored recently for image classification [26], [27] and

segmentation [28]. However, our method is different from

these previously proposed algorithms based on joint sparse

representation for classification. For example, Yuan and

Yan [27] proposed a multitask sparse linear regression

model for image classification. This method uses group

sparsity to combine different features of an object for

classification. Zhang et al. [26] proposed a joint dynamic

sparse representation model for object recognition. Their

essential goal was to recognize the same object viewed from

multiple observations, i.e., different poses. Our method is

more general in that it can deal with both multimodal as

well as multivariate sparse representations.
This paper makes the following contributions:

. We present a robust feature level fusion algorithm
for multibiometric recognition. Through the pro-
posed joint sparse framework, we can easily handle
unequal dimensions from different modalities by
forcing the different features to interact through
their sparse coefficients. Furthermore, the proposed
algorithm can efficiently handle large-dimensional
feature vectors.

. We make the classification robust to occlusion and
noise by introducing an error term in the optimiza-
tion framework.

. The algorithm is easily generalizable to handle
multiple test inputs from a modality.

. We introduce a quality measure for multimodal
fusion based on the joint sparse representation.

. Last, we kernelize the algorithm to handle non-
linearity in the data samples.
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Fig. 1. Overview of our algorithm. The proposed algorithm represents the test data by a sparse linear combination of training data while constraining
the observations from different modalities of the test subject to share their sparse representations. Finally, classification is done by assigning the test
data to the class with the lowest reconstruction error.



A preliminary version of this work appeared in [29],
which describes just the linear version of the algorithm,
robust to noise and occlusion. Furthermore, extensive
experimental evaluations are presented here.

1.1 Paper Organization

The paper is organized as follows: In Section 2, we describe
the proposed sparsity-based multimodal recognition algo-
rithm, which is kernelized in Section 4. The quality measure
is described in Section 3. Experimental evaluations on a
comprehensive multimodal data set and a face database are
described in Section 5. Finally, in Section 6, we discuss the
computational complexity of the method. Concluding
remarks are presented in Section 7.

2 JOINT SPARSITY-BASED MULTIMODAL

BIOMETRICS RECOGNITION

Consider a multimodal C-class classification problem with
D different biometric traits. Suppose there are p ¼

PC
j¼1 pj

training samples in each biometric trait, where pj is the
number of training samples in class j. For each biometric
trait i ¼ 1; . . . ; D, we denote

Xi ¼
�
Xi

1;X
i
2; . . . ;Xi

C

�
as an ni � p dictionary of training samples consisting of
C subdictionaries Xi

k corresponding to C different classes.
Each subdictionary

Xi
j ¼

�
xij;1;x

i
j;2; . . . ;xij;pj

�
2 IRni�pj

represents a set of training data from the ith modality
labeled with the jth class. Note that ni is the feature
dimension of each sample. Elements of the dictionary are
often referred to as atoms. In multimodal biometrics
recognition problem, given test samples Y, which consists
of D different modalities fY1;Y2; . . . ;YDg, where each
sample Yi consists of di observations Yi ¼ ½yi1;yi2; . . . ;
yidi � 2 IRni�di , the objective is to identify the class to which
a test sample Y belongs to. Note that we do not constrain
the number of samples per modality to be the same, as
assumed in forming the training matrix. In what follows, we
present a multimodal multivariate sparse representation-
based algorithm for this problem [24], [25], [30].

2.1 Multimodal Multivariate Sparse Representation

We propose to exploit the joint sparsity of coefficients from
different biometric modalities to make a joint decision. To
simplify this model, let us consider a bimodal classification
problem where the test sample Y ¼ ½Y1;Y2� consists of two
different modalities such as iris and face. Suppose that Y1

belongs to the jth class. Then, it can be reconstructed by a
linear combination of the atoms in the subdictionary X1

j .
That is, Y1 ¼ X1�1 þN1, where �1 is a sparse matrix with
only pj nonzero rows associated with the jth class and N1 is
the noise matrix. Similarly, since Y2 represents the same
subject, it belongs to the same class and can be represented
by training samples in X2

j with different sets of coefficients
�2
j . Thus, we can write Y2 ¼ X2�2 þN2, where �2 is a

sparse matrix that has the same sparsity pattern as �1. If we
let � ¼ ½�1;�2�, then � is a sparse matrix with only

pj nonzero rows, as both Y1 and Y2 are represented by
samples of the jth class.

In the more general case where we have D modalities, if
we denote fYigDi¼1 as a set of D observations each
consisting of di samples from each modality and let � ¼
½�1;�2; . . . ;�D� 2 IRp�d be the matrix formed by concatenat-
ing the coefficient matrices with d ¼

PD
i¼1 di, then we can

determine the row-sparse matrix � by solving the following
‘1=‘q-regularized least-squares problem:

�̂ ¼ arg min
�

1

2

XD
i¼1

kYi �Xi�ik2
F þ �k�k1;q; ð1Þ

where � is a positive parameter and q is set greater than 1 to
make the optimization problem convex. Here, k�k1;q is a
norm defined as k�k1;q ¼

Pp
k¼1 k����kkq, where ����ks are the row

vectors of � and kYkF is the Frobenius norm of the matrix
Y defined as kYkF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i;j Y

2
i;j

q
. The ‘1=‘q regularization

seeks a solution with sparse nonzero rows; hence, we get a
representation consistent across all the modalities. Once �̂ is
obtained, the class label associated with an observed vector
is then declared as the one that produces the smallest
approximation error:

ĵ ¼ arg min
j

XD
i¼1

��Yi �Xi����ijð�iÞ
��2

F
; ð2Þ

where ����ij is the matrix indicator function defined by keeping
rows corresponding to the jth class and setting all other
rows equal to zero. Note that the optimization problem (1)
reduces to the conventional Lasso [31] when D ¼ 1 and
d ¼ 1. In the case when D ¼ 1, (1) is referred to as
multivariate Lasso [24].

2.2 Robust Multimodal Multivariate Sparse
Representation

In this section, we consider a more general problem where
the data are contaminated by noise. In this case, the
observation model can be modeled as

Yi ¼ Xi�i þ Zi þNi; i ¼ 1; . . . ; D; ð3Þ

where Ni is a small dense additive noise and Zi 2 IRni�di is
a matrix of background noise (occlusion) with arbitrarily
large magnitude. One can assume that each Zi is sparsely
represented in some basis Bi 2 IRni�mi . That is, Zi ¼ Bi�i

for some sparse matrices �i 2 IRmi�di . For simplicity, we
assume Bi to be orthonormal in this paper. Hence, (3) can
be rewritten as

Yi ¼ Xi�i þBi�i þNi; i ¼ 1; . . . ; D: ð4Þ

With this model, one can simultaneously recover the
coefficients �i and �i by taking advantage of the fact that �i

are sparse:

�̂; �̂ ¼ arg min
�;�

1

2

XD
i¼1

kYi �Xi�i �Bi�ik2
F

þ �1k�k1;q þ �2k�k1;

ð5Þ

where �1 and �2 are positive parameters and � ¼ ½�1;

�2; . . . ;�D� is the sparse coefficient matrix corresponding to
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occlusion. The ‘1-norm of matrix � is defined as k�k1 ¼P
i;j j�i;jj. Note that the idea of exploiting the sparsity of

occlusion term has been studied by Wright et al. [16] and
Candes et al. [32].

Once �;� are computed, the effect of occlusion can be
removed by setting ~Yi ¼ Yi �Bi�i. One can then declare
the class label associated with an observed vector as

ĵ ¼ arg min
j

XD
i¼1

��Yi �Xi����ijð�iÞ �Bi�i
��2

F
: ð6Þ

2.3 Optimization Algorithm

The optimization problem (5) is convex but difficult to solve
due to the joint sparsity constraint. In this section, we
present an approach based on the classical alternating
direction method of multipliers (ADMM) [33], [34] to solve
(5). Note that the optimization problem (1) can be solved by
setting �2 equal to infinity. Let

Cð�;�Þ ¼ 1

2

XD
i¼1

��Yi �Xi�i �Bi�i
��2

F
:

Then, our goal is to solve the following optimization problem:

min
�;�
Cð�;�Þ þ �1k�k1;q þ �2k�k1: ð7Þ

In ADMM, the idea is to decouple Cð�;�Þ, k�k1;q, and k�k1

by introducing auxiliary variables to reformulate the
problem into a constrained optimization problem

min
�;�;U;V

Cð�;�Þ þ �1kVk1;q þ �2kUUk1 s:t:

� ¼ V;� ¼ U:
ð8Þ

Since (8) is an equally constrained problem, the augmented
Lagrangian method (ALM) [33] can be used to solve the
problem. This can be done by minimizing the augmented
Lagrangian function f��;��

ð�;�;V;U; A�;A�Þ defined as

Cð�;�Þ þ �2kUk1 þ hA�;��Ui þ ��

2
k��Uk2

F

þ �1kVk1;q þ hA�;��Vi þ ��

2
k��Vk2

F ;
ð9Þ

where A� and A� are the multipliers of the two linear
constraints, and ��; �� are the positive penalty parameters.
The ALM algorithm solves f��;��

ð�;�;V;U; A�;A�Þ with
respect to �, �, U, and V jointly, keeping A� and A� fixed
and then updating A� and A� keeping the remaining
variables fixed. Due to the separable structure of the
objective function f��;��

, one can further simplify the
problem by minimizing f��;��

with respect to variables �,
�, U, and V, separately. Different steps of the algorithm are
given in Algorithm 1. In what follows, we describe each of
the suboptimization problems in detail.

Algorithm 1. Alternating Direction Method of Multipliers

(ADMM).

Initialize: �0;U0;V0;A�;0;A�;0; ��; ��

While not converged do

1. �tþ1 ¼ arg min� f��;��
ð�;�t;Ut;Vt; A�;t;A�;tÞ

2. �tþ1 ¼ arg min� f��;��
ð�tþ1;�;Ut;Vt; A�;t;A�;tÞ

3. Utþ1 ¼ arg minU f��;��
ð�tþ1;�tþ1;U;Vt; A�;t;A�;tÞ

4. Vtþ1 ¼ arg minV f��;��
ð�tþ1;�tþ1;Utþ1;V; A�;t;A�;tÞ

5. A�;tþ1¼
:
A�;t þ ��ð�tþ1 �Vtþ1Þ

6. A�;tþ1¼: A�;t þ ��ð�tþ1 �Utþ1Þ

2.3.1 Update Step for �

The first suboptimization problem involves the minimiza-
tion of f��;��

ð�;�;V;U; A�;A�Þ with respect to �. It has
the quadratic structure, which is easy to solve by setting the
first-order derivative equal to zero. Furthermore, the loss
function Cð�;�Þ is a sum of convex functions associated
with sub-matrices �i, one can seek for �i

tþ1, i ¼ 1; . . . ; D,
which has the following solution:

�i
tþ1 ¼

�
XiT Xi þ ��I

��1�
XiT

�
Yi �Bi�i

t

�
þ ��Vi

t �Ai
�;t

�
;

where I is the p� p identity matrix and �i
t, �i

t, and Ai
�;t are

submatrices of �t, �t, and A�;t, respectively.

2.3.2 Update Step for �

The second suboptimization problem is similar in nature; its
solution is given below:

�i
tþ1 ¼

�
BiT Bi þ ��I

��1�
BiT
�
Yi �Xi�i

tþ1

�
þ ��Ui

t �Ai
�;t

�
;

where Ui
t and Ai

�;t are submatrices of Ut and A�;t,
respectively.

2.3.3 Update Step for U

The third suboptimization problem is with respect to U,
which is the standard ‘1 minimization problem that can be
recast as

min
U

1

2

���tþ1 þ ��1
� A�;t �U

��2

F
þ �2

��
kUk1: ð10Þ

Equation (10) is the well-known shrinkage problem whose
solution is given by

Utþ1 ¼ S �tþ1 þ ��1
� A�;t;

�2

��

� 	
;

where Sða; bÞ ¼ sgnðaÞðjaj � bÞ for jaj � b and zero otherwise.

2.3.4 Update Step for V

The final suboptimization problem is with respect to V,
which can be reformulated as

min
V

1

2

���tþ1 þ ��1
� A�;t �V

��2

F
þ �1

��
kVk1;q: ð11Þ

Due to the separable structure of (11), it can be solved by
minimizing with respect to each row of V separately. Let
����i;tþ1, a�;i;t, and vi;tþ1 be rows of matrices �tþ1, A�;t and
Vtþ1, respectively. Then for each i ¼ 1; . . . ; p, we solve the
following subproblem:

vi;tþ1 ¼ arg min
v

1

2
kz� vk2

2 þ �kvkq; ð12Þ

where z ¼ ����i;tþ1 þ a�;i;t�
�1
� and � ¼ �1

��
. One can derive the

solution for (12) for any q. In this paper, we only focus on the
case when q ¼ 2. The solution of (12) has the following form:

vi;tþ1 ¼ 1� �

kzk2

� 	
þ
z;

where ðcÞþ is a vector with entries receiving values maxðci; 0Þ.

116 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 1, JANUARY 2014



Our proposed sparse multimodal biometrics recognition
(SMBR) method is summarized in Algorithm 2. We refer to
the robust method that takes sparse error into account as
SMBR-E (SMBR with error), and the initial case where it is
not taken into account as SMBR-WE (SMBR without error).

Algorithm 2. Sparse Multimodal Biometrics Recognition

(SMBR).

Input: Training samples fXigDi¼1, test sample fYigDi¼1,

Occlusion basis fBgDi¼1

Procedure: Obtain �̂ and �̂ by solving

�̂; �̂ ¼ arg min
�;�

1

2

XD
i¼1

kYi �Xi�i �Bi�ik2
F

þ�1k�k1;q þ �2k�k1

Output:

identityðYÞ ¼ arg minj
PD

i¼1 kYi �Xi����ijð�̂iÞ �Bi�̂ik2
F

3 QUALITY-BASED FUSION

Ideally, a fusion mechanism should give more weights to
the more reliable modalities. Hence, the concept of quality
is important in multimodal fusion. A quality measure based
on sparse representation was introduced for faces in [16]. To
decide whether a given test sample has good quality or not,
its sparsity concentration index (SCI) was calculated. Given
a coefficient vector ���� 2 IRp, the SCI is given as

SCIð����Þ ¼
C:maxj2f1;...;Cgk�jð����Þk1

k����k1
� 1

C � 1
;

where �j is the indicator function keeping the coefficients
corresponding to the jth class and setting others to zero. SCI
values close to 1 correspond to the case where the test
sample can be represented well using the samples of a
single class, hence are of high quality. On the other hand,
samples with SCI close to 0 are not similar to any of the
classes, and hence are of poor quality. This can be easily
extended to the multimodal case using the joint sparse
representation matrix �̂̂�. In this case, we can define the
quality, qij, for sample yij as

qij ¼ SCIð�̂i
jÞ;

where �̂
i

j is the jth column of �̂
i
. Given this quality

measure, the classification rule (2) can be modified to
include the quality measure:

ĵ ¼ arg min
j

XD
i¼1

Xdi
k¼1

qikkyik �Xi����jð�i
kÞk

2
F ; ð13Þ

where ����j is the indicator function retaining the coefficients
corresponding to jth class.

4 KERNEL SPACE MULTIMODAL BIOMETRICS

RECOGNITION

The class identities in the multibiometric data set may not
be linearly separable. Hence, we also extend the sparse
multimodal fusion framework to kernel space. The kernel
function, � : IRn � IRn, is defined as the inner product

�ðxi;xjÞ ¼ h�ðxiÞ; �ðxjÞi;

where � is an implicit mapping projecting the vector x into
a higher dimensional space.

4.1 Multivariate Kernel Sparse Representation

Considering the general case of D modalities with fYigDi¼1

as a set of di observations, the feature space representation
can be written as

�ðYiÞ ¼
�
�
�
yi1
�
; �
�
yi2
�
; . . . ; �

�
yid
��
:

Similarly, the dictionary of training samples for modality
i ¼ 1; . . . ; D can be represented in feature space as

�ðXiÞ ¼
�
�
�
Xi

1

�
; �
�
Xi

2

�
; . . . ; �

�
Xi
C

��
:

As in joint linear space representation, we have

�ðYiÞ ¼ �ðXiÞ�i;

where �i is the coefficient matrix associated with modality i.
Incorporating information from all the sensors, we seek
to solve the following optimization problem similar to the
linear case:

�̂ ¼ arg min
�

1

2

XD
i¼1

k�ðYiÞ ��ðXiÞ�ik2
F þ �k�k1;q; ð14Þ

where � ¼ ½�1;�2; . . . ;�D�. It is clear that the information
from all modalities is integrated via the shared sparsity
pattern of the matrices f�igDi¼1. This can be reformulated
in terms of kernel matrices as

�̂ ¼ arg min
�

1

2

XD
i¼1

�
trace

�
�iT KXi ;Xi

�i
�

� 2trace
�
KXi;Yi

�i
��
þ �k�k1;q;

ð15Þ

where the kernel matrix KA;B is defined as

KA;Bði; jÞ ¼ h�ðaiÞ; �ðbjÞi; ð16Þ

ai and bj being ith and jth columns of A and B, respectively.

4.2 Optimization Algorithm

Similarly to the linear fusion method, we apply the
alternating direction method to efficiently solve the pro-
blem for kernel fusion. This is done by introducing a new
variable V and reformulating the problem (15) as

arg min
�;V

1

2

XD
i¼1

�
trace

�
�iT KXi;Xi�i

�
� 2trace

�
KXi;Yi�i

��
þ �kVk1;q s:t: � ¼ V:

ð17Þ

Rewriting the problem using the Lagrangian multiplier P�,
the optimization problem becomes

arg min
�;V

1

2

XD
i¼1

�
trace

�
�iT KXi;Xi�i

�
� 2trace

�
KXi ;Yi�i

��

þ �kVk1;q þ hP�;��Vi þ 	�

2

����V
��2

F
;

ð18Þ

where 	� is a positive penalty parameter. This upon re-
arranging reduces to
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arg min
�;V

1

2

XD
i¼1

�
trace

�
�iT KXi;Xi�i

�
� 2trace

�
KXi;Yi�i

��

þ �kVk1;q þ
	�

2
��Vþ 1

	�
P�

����
����

2

F

:

ð19Þ

Now, (19) can be solved in a similar way as the linear fusion
problem in (5). The optimization method is summarized in
Algorithm 3. It should be pointed out that each step has a
simple closed-form expression.

Algorithm 3. Alternating Direction Method of Multipliers

(ADMM) in kernel space.

Initialize: �0;V0;B0; 	�

While not converged do

1. �tþ1 ¼ arg min�
1
2

PD
i¼1ðtraceð�iT KXi;Xi�iÞ �

2traceðKXi;Yi�iÞÞ þ �kVtk1;q þ
	�

2

����Vt þ 1
	�

P�;t

��2

F

2. Vtþ1 ¼ arg minV �kVk1;q þ
	�

2

���tþ1 �Vþ 1
	�

P�;t

��2

F

3. P�;tþ1 ¼ P�;t þ 	�ð�tþ1 �Vtþ1Þ

4.2.1 Update Steps for �t

�tþ1 is obtained by updating each submatrix �i
t,

i ¼ 1; . . . ; D, as

�i
t ¼ ðKXi ;Xi þ 	�IÞ�1�KXi ;Yi þ 	�Vi

t �Pi
�;t

�
; ð20Þ

where I is an identity matrix, and Vi
t and Pi

�;t are submatrices
of Vt and P�;t, respectively.

4.2.2 Update Steps for Vt

The update equation for Vt is the same as in the linear
fusion case using (11) and (12), replacing A�;t and �� with
P�;t and 	�, respectively.

4.3 Classification

Once � is obtained, classification can be done by assigning
the class label as

ĵ ¼ arg min
j

XD
i¼1

���ðYiÞ ��
�
X
i

j

�
�̂
i

j

��2

F
;

or in terms of kernel matrices as

ĵ ¼ arg min
j

XD
i¼1



traceðKY;YÞ � 2trace



�̂iT

j KXi
j;Y

�̂
i

j

�

þ trace


�̂iT

j KXi
j;X

i
j
�̂i
j

��
:

ð21Þ

Here, Xi
j is the subdictionary associated with the jth class

and �̂
i

j is the coefficient matrix associated with this class.
The classification rule can be further extended to include

the quality measure as in (13). But, we skip this step here as

we wish to study the effect of kernel representation and
quality separately.

Multivariate kernel sparse recognition (kerSMBR) algo-
rithm is summarized in Algorithm 4:

Algorithm 4. Kernel Sparse Multimodal Biometrics

Recognition (kerSMBR).
Input: Training samples fXigDi¼1, test sample fYigDi¼1

Procedure: Obtain �̂ by solving

�̂ ¼ arg min�
1
2

PD
i¼1

�
traceð�iT KXi ;Xi

�iÞ �
2traceðKXi;Yi

�iÞ
�
þ �k�k1;q

Output: identityðYÞ ¼ arg minj
PD

i¼1ðtraceðKY;YÞ �
2traceð�̂iT

j KXi
j;Y

�̂
i

jÞ þ traceð�̂iT

j KXi
j;X

i
j
�̂
i

jÞÞ

5 EXPERIMENTS

We evaluated our algorithm on two publicly available data
sets—the WVU multimodal data set [35] and the AR face
data set [36]. In the first experiment, we tested on the WVU
data set, which is one of the few publicly available data sets
that allows fusion at the image level. It is a challenging data
set consisting of samples from different biometric modal-
ities for each subject.

In the second experiment, we show the applicability of the
proposed approach to fusing information from weak bio-
metrics extracted from face images. In particular, the
periocular region has been shown to be a useful biometric
[37]. Similarly, the nose region has also been explored as a
biometric [38]. Sinha et al. [39] have demonstrated that
eyebrows are important for face recognition. However, each
of these subregions may not be as discriminative as the whole
face. The challenge for fusion algorithms is to be able to
combine these weak modalities with a strong modality based
on the whole face [40]. We demonstrate how our framework
can be extended to address this problem. Furthermore, we
also show the effects of noise and occlusion on the
performance of different algorithms. In all the experiments,
Bi was set to be identity for convenience, i.e., we assume
background noise to be sparse in the image domain.

5.1 WVU Multimodal Data Set

The WVU multimodal data set is a comprehensive
collection of different biometric modalities such as finger-
print, iris, palmprint, hand geometry, and voice from
subjects of different age, gender, and ethnicity, as
described in Table 1. It is a challenging data set, as many
of these samples are corrupted with blur, occlusion, and
sensor noise, as shown in Fig. 2. Out of these, we chose iris
and fingerprint modalities for testing the proposed algo-
rithms. In total, there are two iris (right and left iris) and
four fingerprint modalities. Also, the evaluation was done
on a subset of 219 subjects having samples in both
modalities.
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TABLE 1
WVU Biometric Data

Fig. 2. Examples of challenging images from the WVU multimodal data
set. The images shown above suffer from various artifacts such as
sensor noise, blur, and occlusion.



5.1.1 Preprocessing

Robust preprocessing of images was done before feature
extraction. Iris images were segmented using the method
proposed in [41]. Following the segmentation step, 25� 240
iris templates were generated by resampling using the
publicly available code of Masek and Kovesi [42]. Finger-
print images were enhanced using the filtering methods
described in [43], and then the core point was detected from
the enhanced images [44]. Features were then extracted
around the detected core point.

5.1.2 Feature Extraction

Gabor features were extracted from the processed images as
they have been shown to give good performance on both
fingerprints [44] and iris [45]. For fingerprint samples, the
processed images were convolved with Gabor filters at
eight different orientations. Circular tessellations were
extracted around the core point for all the filtered images
similar to [44]. The tessellation consisted of 15 concentric
bands, each of width 5 pixels and divided into 30 sectors.
The mean values for each sector were concatenated to form
the feature vector of size 3;600� 1. Features for iris images
were formed by convolving the templates with a log-Gabor
filter at a single scale, and vectorizing the template to give a
6;000� 1 dimensional feature.

5.1.3 Experimental Setup

The data set was randomly divided into four training
samples per class (one sample here is one data sample each
from six modalities) and the remaining 519 samples were
used for testing. The recognition result was averaged over
five runs. The proposed methods were compared with
state-of-the-art classification methods such as sparse logistic
regression (SLR) [46] and SVM [47]. As these methods
cannot handle multiple modalities, we explored score-level

and decision-level fusion methods for combining the results
of individual modalities. For score-level fusion, the prob-
ability outputs for the test sample of each modality, fyig6

i¼1,
were added together to give the final score vector.
Classification was based upon the final score values. For
decision-level fusion, the subject chosen by the maximum
number of modalities was taken to be from the correct class.
We further compared with an efficient multiclass imple-
mentation of the MKL algorithm [48]. The proposed linear
and kernel fusion techniques were tested separately and
were compared with linear and kernel versions of SLR,
SVM, and MKL algorithms. We denote the score-level
fusion of these methods as SLR-Sum and SVM-Sum, and the
decision-level fusion as SLR-Major and SVM-Major. The
MKL-based method is denoted as MKLFusion. We report
the mean and standard deviation of rank-one recognition
rates for all the methods. We also show the cumulative
match curves (CMCs) for all the classifiers. The CMCs
provide the performance measure for biometric recognition
systems and has been shown to be equivalent to the ROC of
the system [49].

Linear Fusion. The recognition performances of SMBR-
WE and SMBR-E were compared with linear SVM and
linear SLR classification methods. The parameters �1 and �2

were set to 0.01:

. Comparsion of methods. Fig. 3 and Table 2 show the
performance on individual modalities. All the
classifiers show a similar trend. The performance
for all of them are lower on iris images and fingers 1
and 3. The proposed method show superior perfor-
mance on all the modalities. Fig. 4 and Table 3 show
the recognition performance for different fusion
settings. The proposed SMBR approach outperforms
existing classification techniques. Furthermore, the
CMC curves of the proposed approaches lie above
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Fig. 3. CMCs for individual modalities using (a) SMBR-E, (b) SMBR-WE, (c) SLR, and (d) SVM methods on WVU data set.



the other methods for all the fusion settings. Both
SMBR-E and SMBR-WE have similar performance,
though the latter seems to give a slightly better
performance. This may be due to the penalty on the
sparse error, though the error may not be sparse in
the image domain. Furthermore, sum-based fusion
shows a superior performance over voting-based

methods. The MKL-based method shows good
performance for iris fusion, but the performance
drops for other two settings. This may be because by
weighing kernels during training, it loses flexibility
while testing when number of modalities increase.

. Fusion with quality. Clearly, different modalities have
different levels of performance. Hence, we studied
the effect of the proposed quality measure on the
performance of different methods. For a consistent
comparison, the quality values produced by the
SMBR-E method were used for all the algorithms.
Table 4 shows the performance for the three fusion
settings. The effect of including the quality measure
can be studied by comparing with Table 3. Clearly,
the recognition rate increases for all the methods
across the fusion settings. Again SMBR-E and
SMBR-WE give the best performances among all
the methods.

. Effect of joint sparsity. We also studied the effect of
joint sparsity constraint on the recognition perfor-
mance. For this, the SMBR-WE algorithm was run
for different values of �1. Fig. 5 shows the rank-one
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Fig. 5. Variation of recognition performance with different values of
sparsity constraint, �1.

TABLE 2
Rank-One Recognition Performance on WVU Data Set for Individual Modalities

TABLE 3
Rank-One Recognition Performance on WVU Data Set for Different Fusion Settings

Fig. 4. CMCs (Cumulative Match Curve) for multimodal fusion using (a) four fingerprints, (b) two irises, and (c) all modalities on WVU data set.



recognition variation across �1 values for different
fusion settings. All the curves show a sharp increase
in performance around �1 ¼ 0. Furthermore, the
increase is more for iris fusion, which shows around
5 percent improvement at �1 ¼ 0:005 over �1 ¼ 0.
This shows that imposing joint sparsity constraint is
important for fusion. Moreover, it helps in regulat-
ing fusion performance, when the reconstruction
error alone is not sufficient to distinguish between
different classes. The performance is then stable
across �1 values, and starts decreasing slowly after
reaching the optimum performance.

. Variation with number of training samples. We varied
the number of training samples and studied the
effect on the proposed method along with SLR-Sum
and MKLFusion. Fig. 6 shows the variation for fusion
of all the modalities. It can be seen that SMBR-WE
and SMBR-E are stable across number of training
samples, whereas the performances of SLR-Sum- and
MKLFusion-based methods fall sharply. The fall in
performance of SLR-Sum and MKLFusion can be
attributed to the discriminative approaches of these
methods, as well as score-based fusion, as the fusion
further reduces the recognition performance when
individual classifiers are not good.

. Comparison with other score-based fusion methods.
Although sum-based fusion is a popular technique
for score fusion, some other techniques have also
been proposed. We evaluated the performance of the
likelihood-based fusion method proposed in [50].
The results are shown in Table 5. The method does
not show good performance as it models score
distribution as a Gaussian mixture model. However,
it is difficult to model score distribution due to large
variations in data samples. The method is also
affected by the curse of dimensionality.

Kernel Fusion. We further compared the performances of
proposed kerSMBR with kernel SVM, kernel SLR, and

MKLFusion methods. In the experiments, we used radial
basis function (RBF) as the kernel, given as

�ðxi;xjÞ ¼ exp �kxi � xjk2
2


2

 !
;


 being a parameter to control the width of the RBF. For
MKLFusion, we gave linear, polynomial, and RBF kernels
as the base kernels for learning:

. Hyperparameter tuning. To fix the value of hyper-
parameter 
, we iterated over different values of 
,
f2�3; 2�2; . . . ; 23g, for one set of training and test split
of the data. The value of 
 giving the maximum
performance was fixed for each modality, and the
performance was averaged over a few iterations. �
and 	� were set to 0.01 and 0.01, respectively.

. Comparison of methods. Fig. 7 and Table 6 show the
performance of different methods on individual
modalities, and Fig. 8 and Table 7 on different
fusion settings. Comparison of performance with
linear fusion shows that the proposed kerSMBR
significantly improves the performance on indivi-
dual iris modalities as well as iris fusion. The
performance on fingerprint modalities is similar;
however, the fusion of all six modalities (two iris +
four fingerprints) shows an improvement of 0.4
percent. kerSMBR also achieves the best accuracy
among all the methods for different fusion settings.
kerSLR scores better than kerSVM in all the cases,
and it’s accuracy is close to kerSMBR. The
performance of kerSLR is better than the linear
counterpart; however, kerSVM does not show
much improvement.

5.2 AR Face Data Set

The AR face data set consists of faces with varying
illumination, expression, and occlusion conditions, captured
in two sessions. We evaluated our algorithms on a set of
100 users. Images from the first session, seven for each
subject, were used as training and the images from the second
session, again seven per subject, were used for testing. For
testing the fusion algorithms, four weak modalities were
extracted from the face images: left and right periocular,
mouth, and nose regions. This was done by applying
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Fig. 6. Variation of recognition performance with number of training
samples.

TABLE 4
Rank-One Recognition Performance on WVU Data Set Using the Proposed Quality Measure

TABLE 5
Rank One Recognition Performance with the

Likelihood-Based Method [50] on WVU Data Set



rectangular masks as shown in Fig. 9, and cropping out the

respective regions. These, along with the whole face, were

taken for fusion. Simple intensity values were used as

features for all of them. The experimental setup was similar

to the previous section. The parameter values, �1 and �2,
were set to 0.003 and 0.002, respectively. Furthermore,
we also studied the effect of noise and occlusion on
recognition performance.
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Fig. 7. CMCs for individual modalities using (a) kernel SVM, (b) kernel SLR, and (c) kerSMBR.

TABLE 6
Rank-One Recognition Performance on WVU Data Set for Individual Modalities Using Kernel Methods

Fig. 8. CMCs for different fusion methods for (a) four fingerprints, (b) two irises, and (c) all modalities.



. Comparison of methods: Table 8 shows the perfor-
mance of different algorithms on the face data set.
Here, SR shows the classification result using just the
whole face. The block sparse method is a recent
block sparsity-based face recognition algorithm [23]
and FDDL [51] is a state-of-the-art discriminative
dictionaries-based technique, but using only a single
modality. Clearly, the SMBR approach achieves
about 4 percent improvement over other techniques.
Thus, robust classification using multiple modalities
results in a significant improvement over the current
benchmark. Furthermore, a comparison with dis-
criminative methods, such as SLR and SVM, shows
that they perform poorly compared to the proposed
method. This is because weak modalities are hard to
discriminate; hence, score-level fusion with strong
modality does not improve performance. On the
other hand, by appropriately weighing different
modalities, MKLFusion achieves better results.
However, by imposing reconstruction and joint
sparsity simultaneously, the proposed method is
able to achieve the best performance.

. Effect of noise: In this experiment, test images were
corrupted with white Gaussian noise of increasing

variance, 
2. Comparisons are shown in Fig. 10. It can
be seen that both SMBR, SR, and block sparse methods
are stable with noise. The performance of other
algorithms degrade sharply with the noise level. This
also highlights the problem with MKLFusion, as it is
not robust to degradation during testing.

. Effect of occlusion: In this experiment, a randomly
chosen block of the test image was occluded. The
recognition performance was studied with increas-
ing block size. Fig. 11 shows the performance of
various algorithms with block size. SMBR-E is the
most stable among all the methods due to robust
handling of error. Recognition rates for other
methods fall sharply with increasing block size.

. Recognition in spite of disguise: We also performed
experiment on the rest of the AR face data set,
occluded by sun-glass and scarves. Similar to the
above experiment, seven frontal nonoccluded
images per subject, from the first session, were
used for training, and 12 occluded images per
person from both the sessions were used for testing.
Again the proposed SMBR-WE and SMBR-E meth-
ods outperformed the other methods, as shown in
Table 9. SMBR-E method gave the best perfor-
mance, improving by 17.7 percent over the block
sparse method.
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Fig. 9. Face mask used to crop out different modalities.

TABLE 7
Rank-One Recognition Performance on WVU Data Set for Different Fusion Settings Using Kernel Methods

TABLE 8
Rank-One Performance Comparison of Different

Methods on AR Face Data Set

TABLE 9
Rank-One Performance Comparison of Different

Methods on Images with Disguise in AR Face Data Set

Fig. 11. Effect of occlusion on rank-1 recognition performance for AR
face data set.

Fig. 10. Effect of noise on rank-one recognition performance for AR face
data set.



. Quality-based fusion: Quality determination is an
important parameter in fusion here, as strong
modality is being combined with weak modalities.
We studied the effect of quality measure introduced
in Section 3. However, in this case, we fix the
quality for strong modality, viz. whole face to be 1,
while for the weak modalities, the SCI values were
taken. The recognition performance for SMBR-E
and SMBR-WE across different noise and occlusion
levels was studied. Fig. 12 show the performance
comparison with the unweighted methods. Using
quality, the recognition performance for SMBR-WE
goes up to 97.4 percent from 96.9 percent, whereas
for SMBR-WE it increases up to 97 percent from
96 percent. Similarly, results improve across differ-
ent noise levels for both methods. However, SMBR-
WE with quality shows worse performance as block
size is increased. This may be because it does not
handle sparse error; hence, the quality values are
not robust.

6 COMPUTATIONAL COMPLEXITY

The proposed algorithms are computationally efficient. The
main steps of the algorithms are the update steps for �, �,
U, and V. For linear fusion, the update step for � involves
computing ðXiT Xi þ ��IÞ�1, and four matrix multiplica-
tions. The first term is constant across iterations and can be
precomputed. Matrix multiplication for two matrices of
sizes m� n and n� p can be done in OðmnpÞ time. Hence,
for a given training and test data, the computations are
linear in feature dimension. Hence, large feature dimen-
sions can be efficiently handled. Similarly, update step for

� involves matrix multiplication Xi�i. Update steps for U
and V involve only scalar matrix computations and are
very fast. Similarly in the kernel fusion, update for �
involves calculating ðKXi;Xi þ 	�IÞ�1, which can be pre-
computed. Other steps are similar to linear fusion.
Classification step involves calculating the residual error
for each class, and is efficient.

7 CONCLUSION AND DISCUSSIONS

We proposed a novel joint sparsity-based feature level
fusion algorithm for multimodal biometrics recognition.
The algorithm is robust as it explicitly includes both noise
and occlusion terms. An efficient algorithm based on the
alternative direction was proposed for solving the optimi-
zation problem. We also proposed a multimodal quality
measure based on sparse representation. Furthermore, the
algorithm was kernelized to handle nonlinear variations.
Various experiments have shown that the method is robust
and significantly improves the overall recognition accuracy.

An important question is about the theoretical justifica-
tion of the proposed approaches through ‘0=‘1 equivalence.
For the special case of D ¼ 1, the theory of sparse
representation has been reviewed in [52], [53]. However, it
has not been addressed yet for the general multimodal
setting. This is a challenging problem, and can be
investigated as a future direction to this paper.
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